Тюнинг Автомобилей


Главная | Регистрация | Вход
Среда, 27.11.2024, 10:36
Приветствую Вас Гость | RSS
Категории раздела
Двигатель [65] Подвеска [9]
Трансмиссия [3] Экстерьер [12]
Тюнинг салона [8] Автозвук [33]
Выпуск [7] Тормоза [2]
Разное [10] Чип-тюнинг [10]
Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 556
Главная » Статьи » Тюнинг » Двигатель

Тюнинг камеры сгорания

Общие сведения

      Большинство дискуссий, относящихся к типам камер сгорания, касается того, какой из них лучше для форсированного двигателя. Двумя основными типами, имеющимися в распоряжении для конструкторов двигателей, являются следующие:

  • замкнутая или разделенная камера сгорания классической клиновидной формы, в которой камера не простирается на весь диаметр отверстия цилиндра на стороне свечи зажигания или закаленной стороне (противоположной) головки блока;
  • открытая или неразделенная камера,  — модифицированная версия клиновидной камеры, которая простирается на сторону свечи зажигания или закаленную (противоположную) сторону головки блока или, в некоторых случаях, в обе стороны до полного диаметра отверстия цилиндра.

Изначально неразделенные камеры развивались по двум причинам:

  • они минимизировали выступание клапанов на некоторых форсированных двигателях в начале и середине 60-х годов, но из-за ужесточения требований к токсичности выхлопных газов было установлено, что 
  • неразделенные камеры стремились уменьшить токсичные выбросы.

 

      Эти головки с неразделенными камерами иногда можно узнать по их очень небольшой или вообще отсутствующей закаленной (противоположной свече зажигания) области.

      Некоторые головки блока, обычно известные как конструкции c разделенной камерой сгорания, в действительности являются головками с неразделенными камерами сгорания. Ранние конструкции включают в себя камеру, которая простирается до диаметра отверстия цилиндра на стороне свечи зажигания (классическая конструкция с неразделенной камерой сгорания). Но они часто считаются головками с разделенными камерами сгорания, т. к. поздние головки двигателей, обычно называемые головками с разделенными камерами, имеют выемку на противоположной стороне (от свечи), которая расширяет камеру до полного отверстия цилиндра. В этом случае более ранние «меньше разделенные» камеры считаются многими конструкторами двигателей разделенными камерами.

      Несмотря на то, что головки с неразделенными камерами сгорания являются желательными для форсированных двигателей, головки с разделенными камерами часто являются вполне адекватным выбором вместе с распределительным валом особого профиля, пока не возникает избыточное выступание клапанов. Хотя многие головки с разделенными камерами «страдают» от увеличенного выступания клапанов, осторожная корректировка формы иногда это не требует сильной обработки) может уменьшить сильное выступание. Почему? Потому что слегка модифицированные головки блока могут часто обеспечить поток, сравнимый с головками с неразделенными камерами сгорания при подъеме клапанов величиной до 14,0 мм. Головки с неразделенными камерами сгорания, однако, имеют отдельные преимущества при сравнении, т. к. они стремятся уменьшить выступание клапанов при высоких значениях подъема клапанов, часто составляющего 17,8 мм. Однако для повседневного использования в головках с неразделенными камерами сгорания редко имеется какое-либо увеличение потока мощности). Фактически, головки с неразделенными камерами могут в чем-то уменьшить потенциал мощности, т. к. камера большего размера меньше сопротивляется детонации.

Обработка камеры сгорания

      Если использование термостойких покрытий в камере сгорания не представляется возможным, то полезным шагом может быть полировка поверхности камеры сгорания. Это уменьшит поверхность, благодаря удалению тысяч «закоулков и щелей», которые поглощают тепло. Это также уменьшит вероятность образования нагара, который служит причиной детонации. Однако следует иметь в виду, что полировка камер сгорания «открывает дверь» для потенциальных проблем. Имеется несколько вещей, о которых следует помнить:

  • Не увеличивайте камеру сгорания больше, чем требуется. Увеличенная камера сгорания требует дополнительного распространения пламени и имеет большую поверхность, поглощающую тепло.
  • Если вы хотите сделать больше, чем отполировать камеры сгорания, уберите только материал, который «вносит вклад» в выступание клапанов. Не пытайтесь изменять форму камер сгорания, пока не познакомитесь с тем, как сделанные вами модификации будут влиять на распространение пламени.
  • Всегда обрабатывайте камеры, приняв меры для защиты клапанов и седел. Одно неосторожное движение полировочной головки может повредить седла клапанов.
  • Камеры сгорания большего размера требуют большего времени для распространения пламени и имеют большую площадь поверхности, поглощающей тепло. Используйте меньшие камеры и не увеличивайте камеры сгорания больше, чем это необходимо.
  • Убирайте только материал, который увеличивает, выступание клапанов. Сглаживайте все острые края, но не изменяйте форму камер сгорания.
  • Измерьте объем всех камер сгорания после обработки клапанов и удаления материала для уменьшения выступания клапанов, т. к. обе эти операции сильно влияют на окончательный объем камеры
  • Для защиты седел клапанов от повреждений всегда вставляйте пару имитаторов клапанов перед обработкой камеры сгорания.

Самостоятельная обработка камеры сгорания

      Если у вас есть хотя бы средний опыт механика, высокоскоростная шлифовальная машинка и несколько шлифовальных головок, то самостоятельная обработка головки блока цилиндров может быть осуществлена даже за пару выходных дней.      Модификации, которые можно сделать самостоятельно конечно не заменят обработку головки специалистами из специальной мастерской, но можно добиться существенного улучшения характеристик потока просто очисткой, сглаживанием и, в некоторой степени, изменением формы каналов. Помните, что форма, а не полировка, является наиболее важным фактором. За возможным исключением некоторых камер сгорания, не расстраивайтесь, если вы сделали грубую обработку. Лучше позаботьтесь о том, чтобы воспроизвести правильную форму. Если вы намереваетесь изготовить форсированный двигатель и работаете в рамках ограниченных финансовых возможностей, то относительно простые модификации головки блока цилиндров могут обеспечить большие улучшения за разумную цену.      Если головка будет использована на нормальном двигателе, то хорошо сделанная обработка может часто улучшить       характеристики примерно на 5 -10%      Возможен даже больший прирост, если используются другие тщательно подобранные детали, такие как соответствующий распределительный вал, впускной коллектор и карбюратор (или электронная система впрыска топлива), которые помогут обеспечить желаемый диапазон оборотов и вес двигателя, повышенную степень сжатия и т. д. В этих случаях тюнинг головки блока, выполненный вами в своем гараже, может улучшить мощность на 10% или даже больше.

Степень сжатия

      Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок К этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.      Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).      Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия .е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки» цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.      Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение-статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается» смесью так, как если бы работал невидимый нагнетатель.      Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя.      Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1639 см3, . е. 1639 см3 «выбранного» объема плюс 1639 см3 камеры сгорания равны 3278 см3 общего объема цилиндра). Даже при 3278 см3 во всем цилиндре двигатель может втянуть только 1639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала случае с VE, равной 100%) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.      Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3278 см3 топливовоэ-душной смесив цилиндр вместо исходных 1639 см3, которые двигатель мог «вдохнуть» в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3278, см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со1639 см3 до 1092 см3? Когда поршень находится в конце такта впуска, общий объем цилиндра будет теперь только 2731 см3. Если не изменять давление наддува, то оно может «вдавить» только 2731 см3 топливовоз-душной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.      Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.      Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.      Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с «нуля» и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете получить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех деталей двигателя, особенно конструкции распределительного вала и головки блока цилиндров плюс использование системы впрыска воды.      Если вы выберете метод изготовления с «нуля», одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части и уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка), то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 — 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших «куполов» у поршней или камер сгорания меньшего объема.      Если проект вашего двигателя более «умеренный», то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.

Термическая эффективность

      Сгорание топлива в камере сгорания двигателя генерирует тепло, которое расширяет продукты сгорания и «толкает» поршни вниз в отверстие цилиндра. Если тепло отводится от расширяющейся смеси перед тем, как она сможет полностью воздействовать на поршень, потенциальная мощность будет потеряна. Если можно было бы построить идеальный двигатель, то он использовал бы тепло сгорания для расширения рабочей смеси, и ничего бы не терялось из-за рассеяния тепла окружающими металлическими поверхностями. При этих условиях двигатель будет иметь максимальную термическую эффективность, а его выходная мощность будет почти в два раза больше, чем у обычного форсированного двигателя. Представьте себе: двигатель V8 рабочим объемом (4916 см3) с одним Четырехкамерным карбюратором выдает мощность почти 800 л.с.! К сожалению, практически невозможно добиться термической эффективности, близкой к 100%. Одной из целей проекта любого двигателя должна быть максимальная термическая эффективность, т. к. она контролирует то, как двигатель преобразует энергию топлива в полезную мощность.      Имеется много путей улучшения термической эффективности. Некоторые являются незначительными и требуют серьезных исследований для их обнаружения, другие же являются очевидными.      Тепловые характеристики металла, подвергаемого воздействию горящей топливовоздушной смеси в первую очередь в головке блока цилиндров, являются одним из путей. Алюминиевые головки блока являются более эффективными проводниками тепла, чем чугун, а мощность может быть заметно снижена из-за потерь тепла в водяной рубашке. Но с другой стороны, алюминиевая головка «страдает» от некоторых разогретых мест в камере сгорания и обычно имеет более низкие температуры поверхности. Эти последние факторы позволяют достичь более высокой степени сжатия при использовании алюминия и уменьшают чувствительность к детонации. Для двигателей с низкой степенью сжатия чугун является лучшей основой из-за его улучшенной тепловой эффективности.       Теплопроводность алюминия и чугуна может быть существенно уменьшена путем использования относительно новой технологии для автомобильной индустрии: покрытия из тепловых барьеров. Эти высокотехнологичные изолирующие материалы с толщиной порядка 0,4 мм могут серьезно уменьшить теплопроводность. Их использование в последние годы стало достаточно распространенным и, без сомнения, они работают.      Степень прироста мощности от использования покрытий из тепловых барьеров зависит от конструкции головки, размера камеры сгорания и от материала головки (как уже говорилось, алюминий имеет лучшую теплопроводность и может получить больше преимуществ от изолирующих покрытий). Вообще говоря, обычным является прирост мощности порядка 3%. Также и прирост в экономии топлива при «полном дросселе» часто составляет около 3% с возможно большими улучшениями в экономичности при работе с частично открытой дроссельной заслонкой. Как было отмечено изолирующие покрытия на поршнях могут также улучшить термическую (тепловую) эффективность примерно на 4-8%. Таким образом, покрытие поршней и камер сгорания может улучшить мощность примерно на 10%.

Термостойкие покрытия для клапанов

      Хотя поршни и камеры сгорания являются основными областями использования термостойких покрытий, покрытия могут быть использованы и для других менее очевидных областей. Покрытия могут быть использованы на впускных и выпускных клапанах для дальнейшего улучшения мощности и надежности двигателя. Обычно происходит так, что поступающая рабочая смесь отдает значительную часть тепла, когда проходит через впускной клапан. Покрытие передней поверхности впускного клапана может существенно уменьшить температуру на задней стороне клапана, улучшая тепловую эффективность и увеличивая мощность.      Более того, большинство проблем, связанных с клапанами, относятся к теплу и концентрируются вокруг очень горячих выпускных клапанов. Термостойкие покрытия уменьшают температуру головки клапана и, соответственно, потребность в широких седлах для выпускных клапанов. Покрытие на передней части выпускного клапана предотвращает то, что тепло от сгорания смеси достигнет клапана, тогда меньше тепла передается на седло. В дополнение к этому, если покрытием защищена задняя сторона выпускного клапана (за исключением седла и стержня), -тo тепло, достигающее клапана, уменьшается еще больше. Эти модификации позволяют конструкторам концентрировать свое внимание на оптимизации ширины седла клапана для улучшения характеристик потока. Таким образом, в случае покрытия выпускных клапанов, изолирующий материал может не дать непосредственных результатов в увеличении мощности, но это допускает использование модификаций, которые могут улучшить характеристики двигателя.

Категория: Двигатель | Добавил: Ursen (23.08.2009)
Просмотров: 6449 | Комментарии: 2 | Теги: камера сгорания, тюнинг | Рейтинг: 1.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Статистика
Автобазар Одесса. продажа авто. AVTOINDEX.COM

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Реклама
.
Copyright MyCorp © 2024Хостинг от uCoz